Greedy Algorithms for the Minimum Sum Coloring Problem
نویسندگان
چکیده
In this paper we present our study of greedy algorithms for solving the minimum sum coloring problem (MSCP). We propose two families of greedy algorithms for solving MSCP, and suggest improvements to the two greedy algorithms most often referred to in the literature for solving the graph coloring problem (GCP): DSATUR [1] and RLF [2].
منابع مشابه
A Matched Approximation Bound for the Sum of a Greedy Coloring
In the minimum sum coloring problem, the goal is to color the vertices of a graph with the positive integers such that the sum of all colors is minimal. Recently, it was shown that coloring a graph by iteratively coloring maximum independent sets yields a 4 + o(1) approximation for the minimum sum coloring problem. In this note, we show that this bound is tight. We construct a graph for which t...
متن کاملOn sum coloring and sum multi-coloring for restricted families of graphs
We consider the sum coloring (chromatic sum) and sum multi-coloring problems for restricted families of graphs. In particular, we consider the graph classes of proper intersection graphs of axis-parallel rectangles, proper interval graphs, and unit disk graphs. All the above mentioned graph classes belong to a more general graph class of (k+1)clawfree graphs (respectively, for k = 4, 2, 5). We ...
متن کاملSum list coloring, the sum choice number, and sc-greedy graphs
Let G = (V,E) be a graph and let f be a function that assigns list sizes to the vertices of G. It is said that G is f -choosable if for every assignment of lists of colors to the vertices of G for which the list sizes agree with f , there exists a proper coloring of G from the lists. The sum choice number is the minimum of the sum of list sizes for f over all choosable functions f for G. The su...
متن کاملSum List Coloring 2*n Arrays
A graph is f -choosable if for every collection of lists with list sizes specified by f there is a proper coloring using colors from the lists. The sum choice number is the minimum over all choosable functions f of the sum of the sizes in f . We show that the sum choice number of a 2 × n array (equivalent to list edge coloring K2,n and to list vertex coloring the cartesian product K22Kn) is n2 ...
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010